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I apply the distinctions between the probability of a conditional, and a condi- 
tional with a probabilistic consequent, to quantum theory. I concentrate on an 
application hardly studied in the literature: namely, the case where the an- 
tecedent of the conditional states which quantity is measured, and the conse- 
quent states which value the quantity has. I show how we can construe quantttm 
theory as providing propositions of these kinds, both for intrinsic possessed 
values, and for measurement results. I also show that most construals satisfy a 
plausible constraint requiring a kind of independence between which quantity is 
measured and what the value or result is. 

1. PROBABILITIES A N D  CONDITIONALS:  T H E  P R O J E C T  

In this paper, I apply philosophical distinctions between various ways 
o f  combining probabilities and condit ionals to quan tum theory. More  
specifically, I consider the distinctions, established in recent phi losophy of  
language, between the following three kinds o f  proposi t ion,  where X and Y 
are some proposit ions,  --, is a condit ional  connective, pr  is some probabil-  
ity function, and z is a number:  

(P robCond)  p r ( X - ,  Y) = z (probabil i ty o f  a conditional)  
(ProhCons)  X ~ ( p r ( Y ) =  z) (condit ional  with probabilistic 

consequent)  
(CondProb)  pr( Y /  X )  = z (condit ional  probabil i ty) 

These need to be distinguished in the sense that  they can take different 
truth-values. The distinction between (P robCond)  and (CondProb)  is well 
recognized, following Lewis (1986, Chapter  20). As to the two distinctions 
involving (ProbCons) ,  there is no single seminal paper. But various authors  
have noted one or  other  distinction: Lewis (1986, pp. 175-179,  331-333)  
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distinguishes (ProbCons) from (CondProb), and Skyrms (1980, p. 138; 
1984, p. 103) distinguishes it from (ProbCond). 

The distinction between (ProbCond) and (CondProb) has already been 
applied to the state spaces of classical and quantum physics, for the case 
where both X and Y ascribe a value to a physical quantity, and thus 
correspond to subsets of the state space (a subset of phase space, or a 
subspace of Hilbert space). Indeed, for quantum physics, there is a consid- 
erable quantum logical literature relating the conditional and transition 
probability. [See, for example, Bugajski (1978) and Butterfield (1987), which 
both treat classical and quantum physics equally]. 

But the distinctions have hardly been applied to a physical theory's 
probability ascriptions, i.e., statements of the probability either of a 
measurement result or of an intrinsic possessed value, conditional on a speci- 
fication of which quantity is supposed to be measured. This is the case I will 
consider. So for me, X states that a measurement of a certain quantity is per- 
formed, and Y states a corresponding measurement result or intrinsic value. 
(For short, I will say "result" and "value.") And the "pr"  will be provided 
by the theory: for quantum theory, by the state vector or mixed state. 

In fact we can construe both phase space and Hilbert space as providing 
propositions of the first two kinds, for both results and values. To consider 
two kinds of proposition, for both classical and quantum physics, and for 
results and values, one has 2 • 2 • 2 = 8 cases. Each case involves a formal 
construction: one uses the state space to build a set of possible worlds that 
(i) includes as propositions (sets of worlds) the specification of which 
quantity is measured, and (ii) supports a conditional connective ~ as a 
binary operation on sets of worlds, and (iii) is also a probability space. 

For reasons of space, I have to be brief. So I will set aside phase space 
(details available on request), and I will present the Hilbert space construc- 
tions informally. But little will be lost: the constructions are simple and 
similar in the phase space and Hilbert space cases, and the technicalities I 
omit (e.g., definitions of a-fields) are standard and easily filled in. But 
although the constructions are technically simple, they establish four 
conceptual or philosophical points. The main one will be that in most of the 
eight cases the constructions can be done so as to satisfy constraints that 
reflect the distinction between results and values. But I will postpone these 
constraints until Section 3, and spend the rest of this section describing the 
other three points. This will also set my project in context. 

The first point concerns the fact that I do not treat (CondProb). This 
may seem strange because (CondProb) is the most familiar of the three 
kinds, especially within physics; and because it seems the simplest, since it 
involves no ~ .  In fact it is technically difficult, once we set aside the special 
case of considering only finitely many quantities (for which, it is indeed 
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simple--again, I must omit details). Thus in both phase space and Hilbert 
space, there are uncountably many quantities; and so there are uncountably 
many specifications of what quantity or quantities are to be measured 
(uncountably many whether or not some combinations of quantities are not 
comeasurable). (CondProb) brings such specifications into the algebra of 
events, i.e., the domain of pr. And since not all can be assigned nonzero 
probability, we face the problem of how to make sense of conditional 
probability in such a case. [As we will see, this problem does not arise for 
(ProbCond) and (ProbCons), because specifications of what is measured, 
though of course in the algebra of propositions, are kept out of pr's domain.] 

This problem has indeed been addressed, for the case of results and 
Hilbert space, in the only two papers I have found that apply the distinctions 
between our three propositions to a physical theory's probability ascriptions. 
Namely, van Fraassen and Hooker (1976, pp. 229-231) propose to solve the 
problem for this cae by using Popper functions; and Halpin (1991, p. 46) 
endorses this. I believe this proposal has some disadvantages, e.g., it cannot 
satisfy my constraint on values. But space prevents my showing this here 
(again, details available on request). 

The second point is that my main conclusion--viz, we can construe 
physical theories' probability ascriptions as (ProbCond) or (ProbCons), and 
for finitely many quantities, as (CondProb)--is not just a consequence of 
my constructions' interpretations, of ~ or of pr. In fact, my constructions 
will take ~ as a strict conditional, and as a counterfactual conditional [as 
in Stalnaker (1968) and Lewis ( 1973)]. As to probability, for most of the paper 
I just need pr as a map on propositions (sets of worlds) subject to the classical 
probability axioms. [However, the nonclassical nature of quantum, i.e., Born 
rule probabilities will show up, especially for (ProbCond).] Nor will I need 
to take a stand on controversies about the interpretation of probability. And 
these interpretations typically uphold the distinctions between these three 
propositions. [In fact, we can adapt a single simple example so as to show 
all these distinctions, for this range of interpretations of ~ ,  and for various 
interpretations ofpr (Butterfield, 1992).] As we shall see, the main conclusion 
in fact follows from the way in which both phase space and Hilbert space 
allow certain kinds of independence between which quantity is measured and 
what the value of the quantity, or the measurement result obtained, is. 

Third, I should sketch how my project supplements previous work by 
van Fraassen and Hooker (1976) and Halpin (1991) about which of our 
three propositions best suits a theory's probability ascriptions. They only 
consider the case of probabilities of results, for quantum theory. Their 
motivation is of course the familiar interpretative tradition saying that 
quantum theory's probabilities must be taken as conditional on a measure- 
ment being performed (e.g., Dirac, 1958, p. 47; Messiah, 1966, p. 294). But 
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physicists tend to be unaware of our three distinctions. So it is natural to 
ask, as these authors do, whether such distinctions can shed light on the 
interpretation of quantum theory. 

These authors agree in favor of a certain type of (CondProb); namely, 
with Popper functions. But this agreement belies other differences between 
them, of both overall aim and technical detail. As to aims: van Fraassen 
and Hooker aim to explicate Bohr's views, not to give some uniquely 
correct "logical form" or "regimentation" for quantum theory's probabil- 
ity ascriptions; while Halpin does aim for such a form, for which he lists 
desiderata. I myself am skeptical that there is such a form; but considering 
various possible forms is of course still worthwhile, since we understand 
something better when we can look at it in different ways. Another 
difference of aim is that van Fraassen and Hooker confine themselves to 
maximal quantities; but Halpin considers all quantities. 

And as to technical details: van Fraassen and Hooker, after endorsing 
(CondProb), go on to hold that (ProbCond), with ~ as the Stalnaker 
conditional, also explicates Bohr's views. They do this by rigorously 
building "toy" possible worlds, in terms of ordered pairs of the quantity 
measured and the result obtained; they then interpret --* as a Stalnaker 
conditional on these worlds; and they define a probability function on these 
worlds in terms of their (CondProb)'s Popper probability function. On the 
other hand, Halpin does not build such toy worlds. Although he assumes 
a possible-worlds semantics, he takes these worlds as primitive, not con- 
structed. And with this framework, he argues against both (ProbCond) and 
(ProbCons), for the Stalnaker conditional and for any ~ with a certain 
trio of properties. (The trio seems innocuous, and is satisfied by familiar 
alternatives to the Stalnaker conditional, such as the strict conditional and 
Lewis' counterfactual conditional.) 

Set aside the overarching, unresolved dispute about whether there is a 
correct logical form for quantum theory's probability ascriptions. [As 
mentioned, I am skeptical; and accordingly ! will not be endorsing Halpin's 
arguments against (ProbCond) and (ProbCons).] These two papers still 
leave some more specific and tractable matters open. The obvious one arises 
from the fact that van Fraassen and Hooker do not consider (ProbCons), 
while Halpin does not build worlds. So can we build worlds and probabilities 
on them, in van Fraassen and Hooker's kind of way, so as to get (ProbCons) 
construals of quantum theory's probability ascriptions? 

In fact we can: the construction is trivial; and we need no restriction 
to maximal quantities. With an analogous construction, we can also build 
worlds and probabilities for (ProbCond) rather differently from van 
Fraassen and Hooker. This construction is simpler than theirs; and again 
there is no restriction to maximal quantities. As mentioned above, both 
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constructions are simple enough that I will not need to be as formal as van 
Fraassen and Hooker: there is nothing to p r o v e - - o n e  only needs to think 
of  the Hilbert space formalism in a certain way. 

2. NOTATION 

I shall use the following notation 

a, b , . . .  quantities that are measured 
c, d , . . .  quantities, perhaps measured, perhaps not 
A, B . . . .  intrinsic values, or measurement results, for 

quantities a, b 
C, D . . . .  intrinsic values for quantities c, d 
M 1 , . . .  , m i . . . .  a set, perhaps empty, of comeasurable quantities 

I form the corresponding propositions by using a prime. So a '  is the 
proposition that quantity a is measured, etc. NB: The propositions A', B', 
C'~ D" specify the quantity concerned; so A'  entails a', etc. [If we did not 
have this convention, our three kinds of  proposition (ProbCond),  etc., 
would get an unintended in terpre ta t ion--about  how a raw number A as 
value or result affected the probability of  which quantity was measured.] I 
also use the standard logical notation: 

w ~ a': possible world w makes true a '  

As discussed in Section 1, I take the conditional connective -~ to be either 
a strict conditional, defined in terms of  a binary relation of accessibility 
among worlds, or a Stalnaker-Lewis counterfactual conditional, defined in 
terms of  similarity among worlds. In fact, later sections will take accessibil- 
ity to be, as usual, reflexive. And they will endorse the so-called Limit 
Assumption, that at each world, for each antecedent X, there is a set of  
most similar X-worlds; so that I say: 

w ~ X ~ Y iff all the X-worlds most similar to w are Y-worlds 

I can now write down the forms of (ProbCond), etc., that will concern 
us. First, consider values. We want to talk about the probability that a 
quantity has a value, given that a certain quantity, perhaps different from 
the first, is measured; or given that a certain combination of  quantities is 
measured. So we are concerned with 

pr(a '  -~ C') = z; a '  -~ (pr(C') = z) 

and more generally for combinations of  quantities: 

pr(M~ -~ C') = z; M~ -~ (pr(C') = z) 
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For results, the situation is simpler. We want to talk about the 
probability that a quantity has a result, given that this quantity, or a 
combination including it, is measured. So we are concerned with 

p r ( a ' ~ A ' )  = z ;  a ' ~ ( p r ( A ' )  =z )  

and more generally for combination of quantities, requiring that a ~ Mi; 

pr(M~ ~ A') = z; M~ ~ (pr(A') = z) 

I turn to notation for Hilbert space. I write H for Hilbert space, with 
elements v~H.  Each v assigns probabilities to subspaces C, D of H, 
according to the Born rule: pry(C),= [IProjc(v)[[2. For noncommuting sub- 
spaces C and D, the probabilities are nonclassical in the familiar sense that 
marginals are not recovered in the obvious way: 

pro(C) =~ prv(C riD) + prv(C c~D • 

Finally, to help distinguish different notions of probability, I will use: 
pr~ only for Born rule probabilities; PR only for a probability measure on 
possible worlds; and pr for the general idea of probability, e.g., as it occurs 
in our three propositions (ProbCond), etc. 

3. CONSTRAINTS 

With this notation in hand, I can motivate the constraints reflecting 
the distinction between values and results that most of my constructions 
will satisfy. 

As I see it, the basic idea of values is that they are intrinsic properties 
of the system. To analyze "intrinsic" is difficult: the idea is roughly "would 
be possessed independently of the state of other objects". But I will 
consider only independence of whether a quantity is measured, and if so, 
which one. So we get: the value of a quantity would be what it is, whether 
or not that quantity, indeed any quantity, is measured. And similarly, I 
propose, for probabilities of values. So the idea of my constraint for values 
is: 

the probability of a given quantity taking a given value is the same, 
whichever quantity is measured. 

This independence can be made precise, using our propositions (Prob- 
Cond), etc. If  we consider just whether or not the quantity a is measured, 
we get 

for (ProbCond): pr(a '-~ C') = pr(-na '  ~ C') 
for (ProbCons): there is a z s.t. both a ' -~(pr(C ' )  = z) 

and - n a ' ~  (pr(C') = z) 
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But we should also consider the various possible combinations of measure- 
ments. Given the set of quantities {a, b, c, d , . . . } ,  there is a set of comea- 
surable subsets {Mi}. So we get as constraints: 

(ValProbCond) for all Mi, Mj: pr(M~ ~ C') - pr(Mj ~ C') 
(ValProbCons) there is a z s.t. for all M e: M ;  ~ (pr(C') = z) 

Turning to results, these must of course not  be independent of whether 
a quantity is measured. Recall from Section 2 that result A identifies that 
quantity a is measured; so A'  entails a ' .  This makes the above constraints, 
once amended by putting A'  for C', inappropriate for results. For example, 
consider (ProbCond) for results, with a strict or counterfactual ~ .  For this 
case, the point is that there are no ( T a  ~ & A')-worlds. This implies that 
p r ( T a '  ~ A ' )  = O; while we of course want p r ( a ' ~  A') to equal what is 
prescribed by the state space. It is easy to check that similar remarks apply 
to (ProbCons). 

But although results are not independent of what is measured, it is 
reasonable to require that their probability, as ascribed by the theory, is 
thus independent. In philosophical terms, the probability represents the 
strength of a disposition which is itself intrinsic to the system. So the idea 
of my constraint for results is: 

the probability that a measurement of a given quantity would yield a 
given result is to be the same, whichever quantity, if any, is measured 

Again, this independence (this "same, whichever") can be made precise in 
terms of our propositions (ProbCond), etc. 

I propose to use worlds, as in (ProbCons), to express the indepen- 
dence. So we get: across a class of worlds varying among themselves in 
what is measured, the probability, the strength of the disposition to give a 
certain result, is to be the same. For this to be so, the worlds must of 
course agree in their state vector v e l l .  Assuming such a restriction on the 
worlds, and going directly to the case of combinations of measurements, I 
therefore propose the following constraints for results: 

(ResProbCond) 3z s.t. at all worlds, & all Mi containing a: 
pr(M~ ~ A') = z 

(ResProbCons) 3z s.t. at all worlds, & all 34,- containing a: 
M; ~ pr(A ') = z 

Finally, I should emphasize that I interpret these constraints, both for 
values and results, so as to allow the process of measurement to disturb 
values and/or results. I agree that at first glance, they seem not to allow 
this. Thus, if measurement disturbs values, then the probability of values 
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for the time after the measurement will in general vary according to which 
quantity has just been measured, which seems to vitiate my constraint on 
values (in either of its forms). Similarly for results. A measurement might 
disturb the probabilities for results of a subsequent measurement in such a 
way that the probabilities vary according to which quantity has just been 
measured, which seems to vitiate my constraint on results (in either of its 
forms). 

My reply is to clarify the role of time in the constraints. The argument 
just given reads the constraints as considering probabilities of values "for 
the time after the measurement" and probabilities for results "o f  a subse- 
quent measurement." But I stipulate that in my constraints, X and Y are to 
be about the same time. That is, my constraint for values is [before 
formalization by (ProbCond), etc,]: 

the probability of a given quantity taking a given value at time t is 
(fixed by the system's state at t and so is) the same, whichever 
quantity, if any, is measured at t 

And similarly my constraint for results is [before formalization by (Prob- 
Cond), etc.]: 

the probability that a measurement (on the system in its state at t) of 
a given quantity would yield a given result is (fixed by the state at t 
and so is) the same, whichever quantity, if any, is measured at t 

This "same time" requirement applies throughout what follows. [Thus 
understood, these constraints can be applied to the ontological interpreta- 
tion (Bohm, 1952) and to dynamical reduction models (Ghirardi et al., 
1986; Pearle, 1989), both of which explicitly model how measurement 
disturbs. But for reasons of space, I cannot discuss this.] 

4. VALUES: (PROBCOND) 

I only have space to consider what I take to be the orthodox view of 
quantum theory, namely that: 

(i) The state of a system is fully described by a vector v (strictly, a 
ray) in the Hilbert space H. 

(ii) In a state v ~H, the quantities that have values are exactly those 
for which v is an eigenvector (call these v's eigenquantities), and the value 
is the eigenvalue (for simplicity, I set aside the point that probability 1 does 
not imply certainty, so that perhaps even an eigenquantity can lack a value; 
but in later sections, I will respect this point, as it applies to results); 

(iii) The result of a measurement of a is not determined by v, nor by 
v and a specification of other quantities measured together with a. 
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In this section and later, we will see a conflict between the nonclassical 
nature of  quantum probabilities and classical probability measures on 
worlds. In particular, the constraints for (ProbCond),  both for values and 
results, will only be satisfied in a restricted way. To that extent, (ProbCons) 
will be favored. 

So first, the (ProbCond) construction for values. A world is to specify 
a state v e l l ,  the ensuing values, using the orthodox rule (ii) above, and 
which quantities are measured. I represent the ascription of  values for any 
quantity c by a function [c] sending states to values. So by (ii), this function 
has as domain the eigenvectors of  c; or alternatively, it is defined on all of  
H, but takes a null value, say o% on all but eigenvectors of  c. So I define 
a world w as a sequence containing a state v, and the quantities measured. 
I also write s(w), the state of world w, for v~ Then we have, for any c that 
has a value in s(w), 

w ;= @, a, b , . . . )  and w ~ a ' ,  b', the value of  c = [c](s(w)) 

Now let W be a physical mixture of  the v's; i.e., W is a density matrix with 
a physical decomposition into some, perhaps nonorthogonal,  v's. It follows 
that if PR is a probability measure (of  course classical) on worlds whose 
marginal on v matches W, then PR will match W's probabilities for 
eigenquantities c of  the various v. 

But of  course there is a sense in which no classical PR on worlds can 
recover all the quantum probabilities prescribed by a vector v eH.  For  
recall from Section 2 that when quantities c and d do not commute, there 
are noncommuting eigenspaces, C and D say, such that the Born-rule 
probabilities pry(C), pry(D), prv(C riD), etc., violate classical probability. 

Now I turn to defining ~ .  The situation is pleasingly simple. In this 
section and later, the definition is essentially the same for the strict or 
counterfactual conditional, for (ProbCond) for values. [It has to be differ- 
ent for (ProbCond) for results; cf. Section 6.] The definition will also be 
essentially the same for (ProbCons), both for values and results. 

Namely, the --* is to preserve the system's state, v. So for the strict --*, 
we define: 

two worlds are accessible iff they have the same state 

And for the counterfactual ~ ,  we define, for any world w, the most similar 
(closest) a'-worlds to be 

all worlds w', such that both s(w')  = s(w) and w' makes true a '  

Furthermore, the situation allows us some choice. It is easy to check that 
the constructions in this and all later sections go through unaltered if we 
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use either or both of the following strengthenings of accessibility and 
similarity: 

(~) at any world w, the accessible/the closest a'-worlds match w as 
regards which quantities are measured: insofar as this is possible, if some 
sets of quantities are not comeasurable; and insofar as this is possible, since 
in these worlds a itself must be measured. 

(/~) (For similarity only: "centering"): At any world w, the closest 
a'-world is w itself, if w makes a '  true. 

So, specializing again to the case of (ProbCond) for values, I 
now define ~ ,  strict or counterfactual, with only preservation of  the state, 
s(w) ,= v, counting towards accessibility or similarity. Then we 
have: 

w ~ a '  ~ C' iff w ~ C'  iff [by (ii)] s(w) is a C-eigenvector of c 

Indeed, allowing for combinations of measurements 

w ~ M~ ~ C '  iff w ~ M~ ~ C "  iff w ~ C" 

iff s(w) is a C-eigenvector of c 

(Intuitively, each v is like a conjunction of conditionals of the form 
M~ -o C'  for arbitrary Mi and for the C such that v is a C-eigenvector of 
c.) 

It follows that any PR on the worlds whose marginal on v matches a 
physical mixture W will satisfy our constraint (ValProbCond) for the 
eigenquantities of the v's in the physical decomposition of IV. Writing Projc 
for the projector onto eigenspace C of such an eigenquantity, we have 

PR(M~ -o C') = PR(Mj --* C') = t r (W.  Projc) 

But although (ValProbCond) is thus satisfied for these eigenquantities, 
note that these PR values only match some of the quantum probabilities: 
no classical PR on worlds can recover all the pro(C) as PR(a'--* C') or 
PR(M i ~ C'). 

Finally note that the nonuniqueness of PR reflects the fact that the 
construction is not committed to probabilities for a',  b' (to a',  b' being in 
the domain of PR). For the construction to be committed to such probabil- 
ities, they would have to be uniquely induced by probabilities it is commit- 
ted to, i.e., by v. 

5. VALUES: (PROBCONS) 

If the probabilistic consequent in (ProbCons) is about values, we need 
probability ascriptions for values to be true at worlds--so that we get a 
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proposition as second argument for the operation ~ .  So in this section, I 
take the Born rule probabilities to be about values, not results. So a world 
w is to specify a vector v~H, which is the world's state s(w), and which 
quantities are measured. But it must also make true probability ascriptions 
for values. So 

w = (v =:s(w), a, b . . . .  ) and w ~ a' ,  b', pr(C')  = prs(w)(C) 

where prs(w)(C) is the Born rule probability of  eigenspace C. As emphasized 
in Section 4, no classical PR on worlds can recover these quantum 
probabilities prs(w~(C) for all C. 

Now define ~ ,  strict or counterfactual, with only preservation of  the 
state, s(w), counting toward accessibility or similarity. Then for any world 

w ~ a ' ~  [pr(C') = prs(w~(C)], M; ~ [pr(C') = pr~(~)(C)] 

The constraint (ValProbCons) is clearly satisfied. At the worlds with a 
common state, pr~(~)(C) is the common value z such that for all Mi 

M~ ~ [pr(C') = z] 

Finally, note that we could make an alternative construction. Namely, 
we could require also that each world make true nonprobabilistic ascriptions 
of  values, for its states eigenquantities, according to (ii) of  Section 4. Thus 
if s(w) is a C-eigenvector of c, we get 

w ~ C'  and w ~ M~ ~ C '  

in addition to what we already have, 

w ~ a '  ~ [pr(C') = prs(w~(C)] 

This alternative in effect embeds Section 4's construction in that of  this 
section. 

6. RESULTS: (PROBCOND)  

I turn to results in Hilbert space, maintaining the orthodox view 
announced at the start of  Section 4. We will see that, as happened for values, 
(ProbCond) is less natural than (ProbCons). Indeed, it is less natural than 
it was for values: even to get satisfaction of  (ResProbCond) for the 
eigenquantities of the state, we will need to revise our definition of - ,  from 
the usual "preserve only the state s(w)." [This will also make contact with 
van Fraassen and Hooker  (1976) and Halpin (1991), who, as discussed in 
Section 1, confine themselves to the case of  results in Hilbert space.] 

For  (ProbCond), a world w is to specify a state s(w),=vrH, which 
quantities are measured, and the results obtained. 
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Recall that a result specifies its quantity: in terms of  propositions, A'  
entails a'. And in accordance with (iii) of Section 4, a result A is not 
determined by the state v, not even when taken together with the specifica- 
tion of other quantities measured together with a. Indeed, since probability 
1 does not imply certainty (probability 0 events can happen), the result A 
is not determined even in the case where v is an A-eigenvector of  a. So 
results for quantities cannot be represented by functions on H, even if 
parametrized by comeasurable sets, e.g., [aMi]. So we have 

w = (v =:s(w), a, b . . . . .  A, B . . . .  ) and w ~ a ' ,  b', A', B' 

[We could require that w also make true value ascriptions for unmeasured 
quantities; according to (ii) of Section 4, for eigenquantities of  s(w). But as 
before, this would just embed a previous construction in the present one. 
For  simplicity I omit it.] 

We can put the above points about results in terms of an entailment 
and a nonentailment at the metalevel. A'  entailing a '  gives an entailment 

w ~ A '  entails w ~ a '  

But the fact that A is not determined by (v, a, b , . . . ) ,  even when v is an 
A-eigenvector of  a, means that we have two nonentailments: 

[w ~ A'] 4", "(= [w ~ a' & s(w) is an A-eigenvector of a] 

Now suppose we define ~ ,  strict or counterfactual, as usual, with only 
preservation of  the state s(w) counting toward accessibility or similarity [if 
one likes, with Section 4's strengthenings (~) and (fl)]. The nonentailments 
above imply that the a'-worlds with a given state s (w) - - the  worlds to 
which we are led in a conditional with antecedent a ' - -  vary in their results. 
They do so even if s(w) is an A-eigenvector of  a. So no world makes true 
the conditional a ' ~ A '  (for any result A). So any PR on the worlds must 
assign this conditional 0: PR(a ' -- .  A') = 0. So no such PR recovers quan- 
tum theory's probability ascriptions as (ProbCond)s,  even in some limited 
way. [Van Fraassen and Hooker  make this point (1976, p. 226(a), p. 236); 
cf. also Halpin (1991, p. 47).] 

However, there is a way to amend the definition of  ~ so as to get a 
(ProbCond) recovery of  the quantum probabilities for eigenquantities of 
the state, much like Section 4, and so as to get a correspondingly restricted 
satisfaction of  the constraint (ResProbCond).  Indeed, there are various 
ways one can amend the definition of ~ so as to get these conclusions. 
What matters is just that the definition has this property: 

w Y a'  ~ A' iff s(w) is an A-eigenvector of a 
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For  this will imply that for any classical measure PR on the worlds 

PR(a '  ~A ' )  = PR(the state is an A-eigenvector of a) 

As we shall see, this last easily delivers a restricted (ResProbCond).  
So we could get what we want by just defining ~ by the property 

above. Another way is to follow Halpin's proposal (1991, pp. 53-55) [as 
mentioned in Section 1, he motivates it by rejecting (ProbCons)]. In our 
terminology, he proposes in effect that ~ should be understood as "would 
with quantum probability, prescribed by s(w), equal to 1"; and that this is 
just the extreme, probability 1, case of  a probabilistic counterfactual 
"would with probability p ."  In more detail; he assumes that for each world 
w and antecedent a' ,  there is a set of most-similar-to-w a'-worlds (p. 42). 
Then he points out that at any world w, s(w) defines a classical probability 
measure on result propositions A' (strictly speaking, on the intersections of  
these result propositions with w's set of  closest a'-worlds). He then 
proposes that this probability measure gives the truth conditions o f  his 
probabilistic counterfactual. It follows immediately that if we read ~ in 
a' ~ A '  as Halpin's "would with probability 1," then we get the property 
we want: 

w ~ a'--* A'  iff s(w) is an A-eigenvector of  a 

Van Fraassen and Hooker  give a technically more difficult amendment of  
~ ,  also aimed at (ProbCond) recovering quantum probabilities; they use 
supervaluations (van Fraassen and Hooker,  1976, pp. 2370, but neither 
they nor Halpin consider (ResProbCond), to which I now turn. 

This property implies that for any classical measure PR on the worlds 

PR(a '  ~A ' )  = PR(the state is an A-eigenvector of  a) 

For  a fixed v, P R ( a ' ~  A') will then be 0 or 1 according as v is or is not 
such an eigenvector. But P R ( a ' ~  A') can be nontrivial (i.e., r  or 1) once 
we consider mixtures. Thus, let W be a physical mixture of  the v's. Then, 
as in Section 4, if PR, a classical probability measure on the worlds, has a 
marginal on v that matches W, PR's assignment to conditionals a'--.A', 
where a is an eigenquantity of  one of  the v's, will equal W's assignment. 

P R ( a ' ~  A') = tr(W �9 ProjA), a an eigenquantity of  one of  the v's 

And similarly for combinations of  measurements 3/,.: 

PR(M; ~ A ') = tr( W.  ProjA), a e Mi, an eigenquantity of one of  the v's. 

Now we can get satisfaction of  (ResProbCond),  though only for the 
eigenquantities of the v's. It suffices to take this equation to be itself true 
at each world. If  we do this, then the r.h.s, t r (W-ProjA),  is the common 
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value z such that for all M~ containing a, it is true at each world that 
PR(M~ --} A') = z. 

7. RESULTS: (PROBCONS) 

In this final section, we shall see how (ProbCons) for results need only 
deal with classical probabilities and can satisfy the constraint (ResProb- 
Cons). 

We begin much as in Section 6. A world is to specify all that it 
specified there, and also probabilities of results. To be precise, a world w is 
to specify a state v 6H, which quantities a, b , . . .  are measured, Born rule 
probabilities of all these quantities' possible results (probabilities fixed by 
(v, a, b . . . .  ), and the results actually obtained (not so fixed!). So we have 

and 

w = (v  =, s(w), a, b . . . .  , A ,  B . . . .  ) 

w ~ a',  b', A ', B', pr(A') = pry(A) . . . .  

where as usual pry(A) is the Born-rule probability. (As in Section 6, I could 
require that w also make true value ascriptions for unmeasured quantities; 
but as there, I omit this for simplicity.) So again, we have two nonentail- 
ments: 

[w ~ A'] 4~, ~ [w ~ a' & s(w) is an A-eigenvector of a] 

Even before defining ~ ,  we can now see how treating results rather 
than values leads to a restriction to comeasurable sets and so to the 
adequacy of classical probability. Note that each state s(w) fixes a measure, 
PR~(w) say, on all the a'-worlds with state s(w) by 

PR~(w) (A ') := pr~(w~ (A) (.'= the Born-rule probability) 

This generalizes to combinations of measurements. The set of all the worlds 
is partitioned by propositions stating which v is the state (we could write 
these propositions as v'). Any cell of this partition is itself partitioned into 
subcells by the propositions M~. In each subcell, the state v prescribes a 
wholly classical probability measure, PR~.i say, on all propositions report- 
ing single and joint results for quantities in M;. (Strictly speaking, the 
domain is the intersections of these propositions with the subcell in 
question; but I shall not put this intersection in the notation.) Thus for 
pairs of results A, B taken as subspaces of H, we have 

PR,,j(A' & B').'=pr~(A riB) (.'= the Born-rule probability) 
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Thus, treating results leads to a restriction to comeasurable sets, and so to 
the adequacy of  classical probability (i.e., joint probabilities for all subsets 
of  the comeasurable set). 

Now define ~ ,  strict or counterfactual, as usual, with 0nly preserva- 
tion of  the state s(w) counting toward accessibility or similarity [if one 
likes, with Section 4's strengthenings (~) and (fl)]. Then for all worlds w and 
all Me containing a, we have 

w ~ a '  ~ [pr(A ') = pr~(w)(A)], M~ --* [pr(A ' ) =  prs(w)(A)] 

where prs(w)(A) is as usual the Born-rule probability. Similarly for any joint 
probabilities of  results for quantities a, b . . . .  eM;.  

(ResProbCons) is satisfied: prs(w)(A) is the common value z such that 
for all Ms containing a, it is true at all worlds with state s(w) that 
M;  ~ [pr(A') = z]. And similarly for joint probabilities. 
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